turing pi

Raspberry Pi Cluster Episode 6 - Turing Pi Review

A few months ago, in the 'before times', I noticed this post on Hacker News mentioning the Turing Pi, a 'Plug & Play Raspberry Pi Cluster' that sits on your desk.

It caught my attention because I've been running my own old-fashioned 'Raspberry Pi Dramble' cluster since 2015.

Raspberry Pi Dramble Cluster with Sticker - 2019 PoE Edition

So today, I'm wrapping up my Raspberry Pi Cluster series with my thoughts about the Turing Pi that I used to build a 7-node Kubernetes cluster.

Video version of this post

This blog post has a companion video embedded below:

Raspberry Pi Cluster Episode 5 - Benchmarking the Turing Pi

At this point, I've showed you how you can use the Turing Pi as a Kubernetes cluster to run different things. I barely scratched the surface of what's possible with Kubernetes, but I'm planning on doing another series exploring Kubernetes itself later this year. Subscribe to my YouTube channel if you want to see it!

In this post, I'm going to talk about the Turing Pi's performance. I'll compare it to a more traditional Raspberry Pi cluster, my Pi Dramble, and talk about important considerations for your cluster, like what kind of storage you should use, or whether you should run a 32-bit or 64-bit Pi operating system.

As with all the other work I've done on this cluster, I've been documenting it all in my open source Turing Pi Cluster project on GitHub.

Video version of this post

This blog post has a companion video embedded below:

Raspberry Pi Cluster Episode 4 - Minecraft, Pi-hole, Grafana and More!

This is the fourth video in a series discussing cluster computing with the Raspberry Pi, and I'm posting the video + transcript to my blog so you can follow along even if you don't enjoy sitting through a video :)

In the last episode, I showed you how to install Kubernetes on the Turing Pi cluster, running on seven Raspberry Pi Compute Modules.

In this episode, I'm going to show you some of the things you can do with the cluster.

Raspberry Pi Cluster Episode 2 - Setting up the Cluster

This post is based on one of the videos in my series on Raspberry Pi Clustering, and I'm posting the video + transcript to my blog so you can follow along even if you don't enjoy sitting through a video :)

.embed-container { position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; } .embed-container iframe, .embed-container object, .embed-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }

In the first episode, I talked about how and why I build Raspberry Pi clusters.

I mentioned my Raspberry Pi Dramble cluster, and how it's evolved over the past five years.

Raspberry Pi Cluster Episode 1 - Introduction to Clusters

I will be posting a few videos discussing cluster computing with the Raspberry Pi in the next few weeks, and I'm going to post the video + transcript to my blog so you can follow along even if you don't enjoy sitting through a video :)

.embed-container { position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; } .embed-container iframe, .embed-container object, .embed-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }

This is a Raspberry Pi Compute Module.

7 Raspberry Pi Compute Modules in a stack

And this is a stack of 7 Raspberry Pi Compute Modules.

Flashing a Raspberry Pi Compute Module on macOS with usbboot

I recently got to play around with a Turing Pi, which uses Raspberry Pi Compute Modules to build a cluster of up to 7 Raspberry Pi nodes.

Turing Pi Raspberry Pi 7 nodes of Compute Modules

Interested in learning more about building a Turing Pi cluster? Subscribe to my YouTube channel—I'm going to be posting a series on the Turing Pi and Rasbperry Pi clustering in the next few weeks!

You can buy Compute Modules with or without onboard eMMC memory. If you don't have memory, you can attach a microSD card and boot from it, just like you would on any Raspberry Pi model B or model A. But if you have the eMMC memory, it's nice to be able to 'flash' that memory with an OS, so the compute module uses the onboard storage and doesn't require a separate boot device (either microSD card or USB disk).