benchmarks

Getting faster 10 Gbps Ethernet on the Raspberry Pi

If you read the title of this blog post and are thinking, "10 Gbps on a Pi? You're nuts!," well, check out my video on using the ASUS XG-C100C 10G NIC on the Raspberry Pi CM4. Back? Good.

To be clear: it's impossible to route 10 gigabits of total network throughput through any Raspberry Pi on the market today.

ASUS 10G NIC in Raspberry Pi Compute Module 4 IO Board

But it is possible to connect to a 10 gigabit network at 10GBase-T speeds using a Raspberry Pi Compute Module 4 and an appropriate PCI Express 10G NIC. And on my Pi PCI Express site, I documented exactly how I got an ASUS XG-C100C working on the Raspberry Pi. All it takes is a quick recompile of the kernel, and away it goes!

The Apple M1 compiles Linux 30% faster than my Intel i9

(With a caveat: I'm compiling the ARMv8 64-bit Pi OS kernel.)

It seems every week or so on Hacker News, a story hits the front page showing some new benchmark and how one of the new M1-based Macs matches or beats the higher-priced competition in some specific benchmark—be it GeekBench, X86-specific code, or building Emacs.

Well, here's my quick story.

I've been doing a lot of work with Raspberry Pis lately—more specifically, work which often requires recompiling the Pi OS Linux kernel for the aarch64 architecture. I recompile the kernel enough I made my own shirt for it!

Argon One M.2 Raspberry Pi SSD Case Review

I'm a fan of Raspberry Pi cases that keep my Pi cool. And the cases made by Argon Forty have great cooling, which is one reason they're a popular choice. Their latest Argon One M.2 case also adds a built-in high speed SSD drive slot!

Argon One M.2 Case for Raspberry Pi

A few months ago, someone from Argon Forty reached out and asked if I'd like to review the Argon ONE M.2, after they watched my video on booting a Pi 4 from an external SSD, and I accepted.

Unlike most Pi cases, this one actually adds features through it's design, like putting all the ports on the back, and adding a mostly-internal SSD, and so I decided to put it through its paces and see what I liked, and what I didn't like.

Video Review

I also posted a video version of this blog post on YouTube:

The fastest USB storage options for Raspberry Pi

For years, I've been maintaining benchmarks for microSD cards on the Raspberry Pi, but I only spent a little time testing external USB storage, due to historic limitations with the Pi's USB 2.0 bus.

But the Pi 4 cleared away the limitations with a full-speed USB 3.0 bus offering much better performance, so I've done a lot of testing with USB boot, and with all the USB SSDs I had at my disposal. You can see some of those results in this blog post and video on booting a Pi 4 via USB.

After posting my tests concerning UASP support in USB SATA adapters, I got an email from Rob Logan mentioning the performance of some other types of drives he had with him. And he even offered to ship a few drives to me for comparisons!

There's also a video that accompanies this blog post, for the more visually-inclined:

UASP makes Raspberry Pi 4 disk IO 50% faster

You can view a video related to this blog post here: Does UASP make the Raspberry Pi faster?.

A couple weeks ago, I did some testing with my Raspberry Pi 4 and external USB SSD drives. I found a USB 3.0 SSD was ten times faster than the fastest microSD card I tested.

In the comments on the video associated with that post, Brad Manske mentioned something I never even thought about. He noticed that I had linked to an Inateck USB 3.0 SATA case that didn't have UASP.

What's UASP, you might ask?

Raspberry Pi Cluster Episode 5 - Benchmarking the Turing Pi

At this point, I've showed you how you can use the Turing Pi as a Kubernetes cluster to run different things. I barely scratched the surface of what's possible with Kubernetes, but I'm planning on doing another series exploring Kubernetes itself later this year. Subscribe to my YouTube channel if you want to see it!

In this post, I'm going to talk about the Turing Pi's performance. I'll compare it to a more traditional Raspberry Pi cluster, my Pi Dramble, and talk about important considerations for your cluster, like what kind of storage you should use, or whether you should run a 32-bit or 64-bit Pi operating system.

As with all the other work I've done on this cluster, I've been documenting it all in my open source Turing Pi Cluster project on GitHub.

Video version of this post

This blog post has a companion video embedded below:

Raspberry Pi 4 goes 8GB, and Raspberry Pi OS goes 64-bit!

.embed-container { position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; } .embed-container iframe, .embed-container object, .embed-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }

This morning the Raspberry Pi Foundation announced a new 8 GB version of the Raspberry Pi 4. They've been selling a 1, 2, and 4 GB version for the past year, and I've been using all three models in my projects.

8GB Raspberry Pi 4 - photo from Raspberry Pi Foundation website

More RAM is always better, because you can fit more applications on the same Pi, especially if you're using them in a Kubernetes cluster, like I am in my Turing Pi Cluster series!

Raspberry Pi microSD follow-up, SD Association fools me twice?

 ____________________________________________
/ Fool me once, shame on you. Fool me twice, \
\ prepare to die. (Klingon Proverb)          /
 --------------------------------------------
        \   ^__^
         \  (oo)\_______
            (__)\       )\/\
                ||----w |
                ||     ||

(Excerpt from Ansible for DevOps, chapter 12.)

The fallout from this year's microSD card performance comparison has turned into quite a rabbit hole; first I found that new 'A1' and 'A2' classifications were supposed to offer better performance than the not-Application-Performance-class-rated cards I have been testing. Then I found that A2 rated cards offer no better performance for the Raspberry Pi—in fact they didn't even perform half as well as they were supposed to, for 4K random reads and writes, on any hardware I have in my possession.

A2-class microSD cards offer no better performance for the Raspberry Pi

Update: See follow-up post about A1 vs A2 performance, Raspberry Pi microSD follow-up, SD Association fools me twice?.

After I published my 2019 Raspberry Pi microSD card performance comparison, I received a lot of feedback about newer 'A2' Application Performance class microSD cards, and how they could produce even better performance for a Raspberry Pi.

A2 Performance Class SanDisk and Lexar microSD cards next to older Samsung and SanDisk cards
None of these cards are fakes; grainy halftone printing is visible because I shot this with a macro lens.