Trying every combination to flash my ASUS motherboard's BIOS

tl;dr: Use an old-fashioned USB 2.0 flash drive, format it FAT32, download the firmware, make sure it's named correctly, and use the motherboard's 'BIOS Flashback' option after powering off the computer.

This past week, I devoted far too much time to the task of updating my brand new motherboard's BIOS.

It started with a combo deal from Micro Center: a ASUS ROG Strix B650E-F Gaming WiFi motherboard, a Ryzen 9 7900x CPU, and a G.Skill Flare X5 Series 32GB DDR5-6000 memory kit, all for $599. Quite a beefy upgrade for the main PC I use to compile code and do random Linux-y tasks.

Monitoring my ASUS RT-AX86U Router with Prometheus and Grafana

I've been running my Internet Monitoring Pi for a year or so, and it's nice to collect data on Internet performance from inside my network.

But my router—currently an ASUS RT-AX86U—also tracks its own metrics for inbound and outbound traffic, among other things:

ASUSWRT-Merlin System Status Dashboard metrics

Sometimes having the raw data from the router that's on the edge of the network can tell a different story than measuring things behind the router. So I want to grab this data and put it into Prometheus.

Getting faster 10 Gbps Ethernet on the Raspberry Pi

If you read the title of this blog post and are thinking, "10 Gbps on a Pi? You're nuts!," well, check out my video on using the ASUS XG-C100C 10G NIC on the Raspberry Pi CM4. Back? Good.

To be clear: it's impossible to route 10 gigabits of total network throughput through any Raspberry Pi on the market today.

ASUS 10G NIC in Raspberry Pi Compute Module 4 IO Board

But it is possible to connect to a 10 gigabit network at 10GBase-T speeds using a Raspberry Pi Compute Module 4 and an appropriate PCI Express 10G NIC. And on my Pi PCI Express site, I documented exactly how I got an ASUS XG-C100C working on the Raspberry Pi. All it takes is a quick recompile of the kernel, and away it goes!

The ASUS Tinker Board is a compelling upgrade from a Raspberry Pi 3 B+

I've had a long history playing around with Raspberry Pis and other Single Board Computers (SBCs); from building a cluster of Raspberry Pis to run Drupal, to building a distributed home temperature monitoring system with Raspberry Pis, I've spent a good deal of time testing the limits of an SBC, and also finding ways to use their strengths to my advantage.

ASUS Tinker Board SBC