Sipeed's new handheld RISC-V Cyberdeck

tl;dr: Sipeed sent a Lichee Console 4A to test. It has a T-Head TH1520 4-core RISC-V CPU that's on par with 2-3 generations-old Arm SBC CPUs, and is in a fun but impractical netbook/cyberdeck form factor. Here's my video on the Lichee Console 4A, and here's all my test data on GitHub.

Sipeed Lichee Console 4A

Last year I tested the StarFive VisionFive 2 and Milk-V Mars CM—both machines ran the JH7110, a 4-core RISC-V SoC that was slower than a Pi 3.

Sipeed introduced the Lichee Pi 4A line of computers, offering a slightly newer T-Head TH1520 SoC, which is also 4-core, but uses faster C910 cores than the JH7110.

Raspberry Pi IPO: Selling out?

Raspberry Pi 5 blended into 100 dollar bill USD

Raspberry Pi is looking into an IPO (Initial Public Offering).

But wait, Raspberry Pi's a non-profit! They can't do that? And who would want stock in Raspberry Pi anyway? Their core market hates them—they abandoned hobbyists and makers years ago!

And there are like tons of clones and competitors, nobody even needs Raspberry Pi? Plus, aren't they crazy-expensive? It's like a hundred bucks now, and that's if you can even find one to buy!

Well, hold on a second... there are a lotta misconceptions out there. In this post, I'll walk through what's actually happening, and also through things I see online.

This blog post is a lightly-edited transcript of a video on my YouTube channel, which you can watch below:

So you want to make a Raspberry Pi killer...

Raspberry Pi CM4 Clones stacked up

I'm in the unique position of owning a collection of Raspberry Pi Compute Modules 4 (CM4).

I also own at least one of every production CM4 clone in existence.

This sets up a quandary: if I have the real thing, what motivation do I have to care about the clones?

There are hundreds of CM4 carrier boards that do everything from restoring retro game consoles to monitoring remote oil rigs in highly-explosive environments.

Since launch, the CM4 has been difficult—and since early 2021, impossible—to acquire. The supply constraints are well documented, and I'm sure a few comments will lament the situation. But the CM4 is trickling back to 'in stock' at many suppliers (about how the Pi 4 was a couple months ago).

Getting RISC-V (again): Milk-V's Mars CM

Milk-V Mars CM with Box

tl;dr: No, it's not a replacement for a Raspberry Pi Compute Module 4. But yes, it's an exciting tiny RISC-V board that could be just the ticket for more RISC-V projects, tapping into the diverse ecosystem of existing Compute Module 4 boards.

This tiny computer is the Mars CM. It's the exact same size and shape as the Raspberry Pi Compute Module 4. It should be a drop-in replacement. And on its box it says it supports 4K, Bluetooth and WiFi, and has gigabit Ethernet. It's also supposed to have PCI Express!

NVMe SSD boot with the Raspberry Pi 5

Pi 5 PCIe NVMe Kioxia XG8 SSD

In my video about the brand new Raspberry Pi 5, I mentioned the new external PCIe port makes it possible to boot the standard Pi 5 model B directly off NVMe storage—an option which is much faster and more reliable than standard microSD storage (even with industrial-rated cards!).

Enabling NVMe boot is pretty easy, you add a line to /boot/firmware/config.txt, modify the BOOT_ORDER in the bootloader configuration, and reboot!

The Rock 5 B is not a Raspberry Pi killer—yet

Rock 5 model B on desk with Raspberry Pi in background

Radxa's Rock 5 model B is an ARM single board computer that's 3x faster than a Raspberry Pi. And that's just the 8-core CPU—with PCI Express Gen 3 x4 (the Pi has Gen 2 x1), storage is 7x faster! I got over 3 GB/sec with a KIOXIA XG6 NVMe SSD.

It's still half as slow as modern ARM desktops like Apple's M1 mini, or Microsoft's Dev Kit 2023 (see my review here). But it's way faster than a Pi, it comes with 2.5 Gig Ethernet, it has two M.2 slots on board... and, well—it also starts at $150!

Using for SBC disk performance testing

For many years, I've maintained some scripts to do basic disk benchmarking for SBCs, to test 1M and 4K sequential and random access speeds, since those are the two most relevant tests for the Linux workloads I run on my Pis.

I've been using this script for years, and it uses fio and iozone to get the metrics I need.

And from time to time, I would test a number of microSD cards on the Pi, or run tests on NVMe SSDs on the Pi, Rock 5 model B, or other SBCs. But my results were usually geared towards a single blog post or a video project.

In 2021 James Chambers set up PiBenchmarks to move to a more community-driven testing dataset.

You can run the following command on your SBC to test the boot storage and upload results directly to

You can't buy a Raspberry Pi right now

...or at least, not without a lot of patience or a fat wallet.

Scalping Prices of the Raspberry Pi on eBay

But why? And are there any signs Raspberry Pis will become available to the general public again soon?

To be clear, I'm speaking of the mainstream SBC Raspberry Pis, like the Pi 4 model B, the Compute Module 4, the Pi Zero 2 W, and even in many cases the Pi 400. The Pico and Pico W are both readily available, at least in most markets where I've looked (local shortages always exist, but typically not for months or years like with full-size Pis).