poe

3rd Party PoE HATs for Pi 5 add NVMe, fit inside case

Today I published a video detailing my testing of three new Raspberry Pi HATs—these HATs all add on PoE+ power and an NVMe SSD slot, though the three go about it in different ways.

You can watch the video for the full story (embedded below), but in this post I'll go through my brief thoughts on all three, and link to a few other options coming on the market as well.

.embed-container { position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; } .embed-container iframe, .embed-container object, .embed-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }

GeeekPi P33 M.2 NVMe M-Key PoE+ HAT

52Pi P33 GeeekPi PoE+ NVMe HAT for Pi 5

Resetting and upgrading old Hikvision IP Cameras

Hikvision security camera installed in drop ceiling

This guide isn't definitive, but it is a good reference point as I am wiping out some Hikvision IP cameras I inherited in my new office space. They were all paired with an annoying proprietary Hikvision NVR, and I wanted to wipe them and use them on a new isolated VLAN with my new Raspberry Pi Frigate-based NVR setup.

The cameras I have are Hikvision model number DS-2CD2122FWD-IS, but this guide should apply to many of the cameras from that era.

Hikvision security camera reset button location

Waveshare's PoE HAT is the first for Raspberry Pi 5

Pi 5 PoE HAT Waveshare F

Power over Ethernet lets you run both power and networking to certain devices through one Ethernet cable. It's extremely convenient, especially if you have a managed PoE switch, because you get the following benefits:

  • A single cable for power + Ethernet (no need for separate power adapters)
  • No need to have electrical service near every device
  • Simple remote power on/off capability (assuming you have a managed switch)
  • Centralized power management (e.g. one UPS in a rack room covering all powered devices)

I have used the Raspberry Pi PoE and PoE+ HATs for years now, allowing me to have 4 or 5 Raspberry Pi per 1U of rack space, with all wiring on the front side. I also use PoE for cameras around my house, though there are dozens of use cases where PoE makes sense.

The Raspberry Pi, since it only requires 3-10W of power, is an ideal candidate for PoE, assuming you can find a HAT for it.

Highly-condensed time-lapse footage with Frigate

Frigate's 0.13.0 release included a feature near and dear to my heart: easy exporting of timelapses, straight from the Frigate UI.

I'm a little bit nutty about timelapses, and have made them with dashcams, GoPros, full DSLRs, webcams, and even Raspberry Pi.

But one thing I haven't done (until now) is make easy timelapses from IP cameras like the Annke 4K PoE cameras I use for security around my house.

Eventually I'm planning on automating things further, but for now, here's my process for building up a timelapse that's relatively small in file size, preserving only frames where there's motion from frame to frame.

For something like clouds/sky, or natural environments, it's better to do a straight timelapse export and maybe recompress it if you want, but for indoor or outdoor security footage, it's nice to condense it down.

Review of Raspberry Pi's PoE+ HAT (June 2021)

The PoE+ HAT powers a Raspberry Pi 3 B+ or 4 model B over a single Ethernet cable, allowing you to skip the USB-C power adapter, assuming you have a PoE capable switch or injector.

Unfortunately, I would recommend the original PoE HAT over the newer PoE+ HAT for most users—though Raspberry Pi have redesigned the HAT slightly and it's more on par with the original, though hard to distinguish which model you're getting. (Updated mid-2023)

For more background on PoE in general, and a bit more detail about the board itself and my tests, please watch my video on the PoE+ HAT—otherwise scroll past it and read on for all the testing results:

Taking control of the Pi PoE HAT's overly-aggressive fan

I am starting to rack up more Pis (quite literally) using the official Pi PoE HAT to save on cabling.

The one thing I hate most about those little HATs is the fact the fans spin up around 40°C, and then turn off a few seconds later, once the temperature is back down to 39 or so, all day long.

I'd be happy to let my Pis idle around 50-60°C, and only have the little whiny fans come on beyond those temperatures. Even under moderate load, the Pi rarely goes above 55°C in my basement, where there's adequate natural convection, so the fans would only really be necessary under heavy load.