arm64

External graphics cards work on the Raspberry Pi

AMD Radeon HD 7450 Graphics card with Raspberry Pi Compute Module 4

In October 2020, after Raspberry Pi introduced the Compute Module 4, I started out on a journey to get an external graphics card working on the Pi.

At the time, it'd been over a decade since the last time I'd built a PC, and I had a lot to learn about PCI Express, the state of graphics card drivers in Linux, and PCI Express support on various ARM SoCs.

It's official: Raspberry Pi OS goes 64-bit

64-bits. More is always better, right?

Well, not exactly. And that's why it's taken years for Raspberry Pi OS to add an officially-supported 64-bit version, in addition to the 32-bit version they've had since the original Pi came out.

Since May 2020, there's been a beta 64-bit version of Pi OS, but it wasn't intended for beginners, and was never linked from the main downloads page.

You had to kinda be 'in the know' to get it. And the reason for that is it's actually branched directly off of Debian Linux and had a few growing pains. But almost all those problems have been ironed out now, and apparently it's time for the Raspberry Pi's 64-bit era.

Raspberry Pi OS 64-bit blog post

The Apple M1 compiles Linux 30% faster than my Intel i9

(With a caveat: I'm compiling the ARMv8 64-bit Pi OS kernel.)

It seems every week or so on Hacker News, a story hits the front page showing some new benchmark and how one of the new M1-based Macs matches or beats the higher-priced competition in some specific benchmark—be it GeekBench, X86-specific code, or building Emacs.

Well, here's my quick story.

I've been doing a lot of work with Raspberry Pis lately—more specifically, work which often requires recompiling the Pi OS Linux kernel for the aarch64 architecture. I recompile the kernel enough I made my own shirt for it!

Cross-compiling the Raspberry Pi OS Linux kernel on macOS

After doing a video testing different external GPUs on a Raspberry Pi last week, I realized two things:

  1. Compiling the Linux kernel on a Raspberry Pi is slow. It took 54 minutes, and I ended up doing it 7 times during the course of testing for that video.
  2. If you ever want to figure out a better way to do something, write a blog post or create a video showing the less optimal way of doing it.

To the second point, about every fifth comment was telling me to cross-compile Linux on a faster machine instead of doing it on the Pi itself. For example:

cross compile raspberry pi kernel youtube comment

And on the Pi Forums, it seems like nobody worth their salt compiles the kernel on the Pi either, so I figured—since I'm probably going to have to do it again another thousand times in my life—I might as well put together a guide for how to do it on a Mac.

What does Nvidia buying ARM mean for Raspberry Pi?

Over the weekend, Nvidia confirmed it would purchase ARM from Softbank for $40 billion.

Now, what is ARM, why is Nvidia buying it, and what does any of this have to do with the Raspberry Pi?

Well, let's start with ARM.

This blog post also has a video version to go along with it.

What is ARM?

ARM can refer to a number of things, but let's start by talking about the company, Arm Holdings. They have lineage dating back to Acorn computers, a British computer manufacturer founded in the late 1970s that designed the first 'Acorn RISC Machine architecture' chips, AKA 'ARM'.

BBC Micro Minicomputer - Source: Wikipedia

What does Apple Silicon mean for the Raspberry Pi and ARM64?

Note: There's a video version of this blog post available here: What does Apple Silicon mean for the Raspberry Pi and ARM64?

Apple Silicon and the Raspberry Pi

A couple weeks ago I tried using the latest Raspberry Pi 4 8 gig model as my main computer for a day, and I posted a video about my experience.

Besides many diehard Linux fans complaining in the comments about my apparent idiocy caused by being a Mac user, the experience taught me one thing: A lot of software still isn't built for 64-bit ARM processors, or even for Linux in general.

But there's one trend that I'm seeing: most of the open source software I use already works great on a Pi 4 running on its 64-bit ARM processor.

I replaced my MacBook Pro with a Raspberry Pi 4 8GB for a Day

Earlier this week, as part of my work doing a more complete review of the Raspberry Pi 4 (coming soon!), I decided I'd go all-in and spend one entire day working entirely (or at least as much as possible) from a Raspberry Pi.

And not just doing some remote coding sessions or writing a blog post—that's easy to do on a Chromebook, a tablet, or any cheap old laptop—but trying to do all the things I do in a given day, like:

  • Browse Twitter using a dedicated app
  • Use Slack (you laugh, but Slack uses more memory than most of the other apps I'm running at any given time—combined!)
  • Record and edit clips of audio and video
  • Work on some infrastructure automation with Docker, Ansible, and Kubernetes

So as with any project of this scope, I created a GitHub repository, pi-dev-playbook, to track my work—and, to be able to immediately replicate my development environment on a new Pi, should the need arise.