computer

When did Raspberry Pi get so expensive?

Raspberry Pi 5 and N100 GMKtec Nucbox G3

I just bought this N100-based Intel x86 mini PC (brand new), and it was cheaper than an almost equivalent—but slower—Raspberry Pi 5.

This GMKtec mini PC is called the Nucbox G3, and it comes with an Intel Alder Lake N100 4-core CPU, 8GB of RAM, a 256 GB M.2 NVMe SSD, and Windows 11 Pro—and mine cost just $131, after a couple coupons.

That's... a lot of computer for a very good price. But the Raspberry Pi—the famous "$35 computer", should be well below that... right?

Well, I bought all the parts required to build a Pi 5 to the same spec—including the adapters and parts to assemble it into one small unit—and it turns out... the Pi is more expensive. And slower.

The Pi 4 still starts at $35 (for a 1 GB model), but the Pi 5 starts at $60 (for 4 GB) and climbs to $80 for the maximum 8 GB model.

MNT Reform - a hackable laptop, not for everyone

MNT Reform bottom with purple battery cells

The MNT Reform's design, the components, everything—is open source. If iFixIt did a teardown, they'd probably give it an 11 out of 10.

You can replace individual battery cells! Some people with these laptops hacked in their own speakers, added more internal Ethernet, or even swapped out the CPU itself.

Does that mean I think you should buy it? No, probably not. It's expensive (starting at €1199), and it's built for a certain type of person. It's not gonna replace a MacBook or a cheap Chromebook.

But why does this exist, and why am I excited about it?

Disclaimer: The reform used in this review was sent to me for testing; it's already been shipped back to MNT Research. They haven't paid me anything, and they have no input into the content of this blog post.

The Raspberry Pi 400 - Teardown and Review

Today Raspberry Pi Trading announced the Raspberry Pi 400, the latest in the series of small education-focused computers that started with the original Raspberry Pi in 2012.

For years, people have come up with creative ways to hack a Pi into keyboards, like the Original Pi in an old Mitsumi keyboard, or the Pi 3 A+ in an official Pi Keyboard.

But the Pi 400 delivers something many have desired: an official Pi 4 board built right into a Pi Keyboard, in a space- and performance-efficient way.

Raspberry Pi 400 Back Ports - Hero

I replaced my MacBook Pro with a Raspberry Pi 4 8GB for a Day

Earlier this week, as part of my work doing a more complete review of the Raspberry Pi 4 (coming soon!), I decided I'd go all-in and spend one entire day working entirely (or at least as much as possible) from a Raspberry Pi.

And not just doing some remote coding sessions or writing a blog post—that's easy to do on a Chromebook, a tablet, or any cheap old laptop—but trying to do all the things I do in a given day, like:

  • Browse Twitter using a dedicated app
  • Use Slack (you laugh, but Slack uses more memory than most of the other apps I'm running at any given time—combined!)
  • Record and edit clips of audio and video
  • Work on some infrastructure automation with Docker, Ansible, and Kubernetes

So as with any project of this scope, I created a GitHub repository, pi-dev-playbook, to track my work—and, to be able to immediately replicate my development environment on a new Pi, should the need arise.

Raspberry Pi Cluster Episode 2 - Setting up the Cluster

This post is based on one of the videos in my series on Raspberry Pi Clustering, and I'm posting the video + transcript to my blog so you can follow along even if you don't enjoy sitting through a video :)

.embed-container { position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; } .embed-container iframe, .embed-container object, .embed-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }

In the first episode, I talked about how and why I build Raspberry Pi clusters.

I mentioned my Raspberry Pi Dramble cluster, and how it's evolved over the past five years.

Raspberry Pi Cluster Episode 1 - Introduction to Clusters

I will be posting a few videos discussing cluster computing with the Raspberry Pi in the next few weeks, and I'm going to post the video + transcript to my blog so you can follow along even if you don't enjoy sitting through a video :)

.embed-container { position: relative; padding-bottom: 56.25%; height: 0; overflow: hidden; max-width: 100%; } .embed-container iframe, .embed-container object, .embed-container embed { position: absolute; top: 0; left: 0; width: 100%; height: 100%; }

This is a Raspberry Pi Compute Module.

7 Raspberry Pi Compute Modules in a stack

And this is a stack of 7 Raspberry Pi Compute Modules.

The ASUS Tinker Board is a compelling upgrade from a Raspberry Pi 3 B+

I've had a long history playing around with Raspberry Pis and other Single Board Computers (SBCs); from building a cluster of Raspberry Pis to run Drupal, to building a distributed home temperature monitoring system with Raspberry Pis, I've spent a good deal of time testing the limits of an SBC, and also finding ways to use their strengths to my advantage.

ASUS Tinker Board SBC

Review: ODROID-C2, compared to Raspberry Pi 3 and Orange Pi Plus

tl;dr: The ODROID-C2 is a very solid competitor to the Raspberry Pi model 3 B, and is anywhere from 2-10x faster than the Pi 3, depending on the operation. The software and community support is nowhere near what you get with the Raspberry Pi, but it's the best I've seen of all the Raspberry Pi clones I've tried.

Orange Pi Plus Setup, Benchmarks, and Initial Impressions

tl;dr: The Orange Pi Plus offers much better specs, and much better performance, than a similarly-priced Raspberry Pi. Unfortunately—and this is the case with most RPi competitors at this time—setup, hardware support, and the smaller repository of documentation and community knowledge narrow this board's appeal to enthusiasts willing to debug annoying setup and configuration issues on their own.

Orange Pi Plus - Front

Orange Pi Plus - Back

A few months ago, I bought an Orange Pi Plus from AliExpress. It's a single-board Linux computer very similar to the Raspberry Pi, with a few key differences: