Blog

A Pigeon is still faster than the Internet

Jeff Geerling holding a homing pigeon

In 2009, a company in South Africa proved a homing pigeon was faster than an ADSL connection, flying a 4 GB USB flash drive to prove it.

Besides IEEE's speculative work, nobody's actually re-run the 'bird vs. Internet' race in over a decade.

Now that I have gigabit fiber, I thought I'd give it a try.

Video

I published a video with all the details—and even more background on the graceful birds used in the experiment—over on my YouTube channel:

My own magic-wormhole relay, for zippier transfers

If you've ever had to transfer a file from one computer to another over the Internet, with minimal fuss, there are a few options. You could use scp or rsync if you have SSH access. You could use Firefox Send, or Dropbox, or iCloud Drive, or Google Drive, and upload from one computer, and download on the other.

But what if you just want to zap a file from point A to point B? Or what if—like me—you want to see how fast you can get an individual file from one place to another over the public Internet?

rsync 40 MB/second

Soundproofing my studio: what's in a wall?

Jeff with resilient channel

Soundproofing is... kind of an art. It's not as simple as buying something and slapping on your walls. And the word 'soundproofing' is a bit of a loaded term.

You could mean deadening sound, so you can record podcasts with that signature radio sound. Or you could mean isolating a room from outside noise, which is an entirely different process. Or you could work on reducing resonance, echo, or just certain frequencies.

In my case, I wanted to build kind of a 'sound cocoon' in the middle of this space, so I could record any time, day or night, even if my AC is running.

Testing iperf through an SSH tunnel

I recently had a server with some bandwidth limitations (tested using scp and rsync -P), where I was wondering if the problem was the data being transferred, or the server's link speed.

The simplest way to debug and verify TCP performance is to install iperf3 and run an iperf speed test between the server and my computer.

On the server, you run iperf3 -s, and on my computer, iperf3 -c [server ip].

But iperf3 requires port 5201 (by default) to be open on the server, and in many cases—especially if the server is inside a restricted environment and only accessible through SSH (e.g. through a bastion or limited to SSH connectivity only)—you won't be able to get that port accessible.

So in my case, I wanted to run iperf through an SSH tunnel. This isn't ideal, because you're testing the TCP performance through an encrypted connection. But in this case both the server and my computer are extremely new/fast, so I'm not too worried about the overhead lost to the connection encryption, and my main goal was to get a performance baseline.

Fork Yeah! Examining open source history after Red Hat's move

We're at the stage in the Red Hat drama where everyone is consulting history, trying to figure out what parts are being repeated in 2023 after Red Hat effectively locked down the sources used to build RHEL clones.

One talk linked quite often was Fork Yeah! The Rise and Development of illumos, by Bryan Cantrill over a decade ago. Bryan was a software engineer at Sun, who went over to Oracle after the buyout, then left to join Joyent, and now resides as CTO of Oxide.

The talk focuses on Sun Microsystem's handling of Solaris and OpenSolaris, both before and after their Oracle acquisition, and the whole talk is worth a listen—so much context about the history of ZFS, Solaris, Illumos, dtrace, and even UNIX and Linux history are contained within.

But there was one section (around the 32:00 mark) where if you substitute "Red Hat" for "Sun," rhymes with this year's "open source company" drama:

I went back and looked at some of the mail trails about this and like, "oh, my God!"

Time Card mini adds Pi, GPS, and OCXO to your PC

For LTX 2023, I built this:

CM4 Timecard mini GPS locked

This build centers around the Time Card mini. Typically you'd install this PCI Express card inside another computer, but in my case, I just wanted to power the board in a semi-portable way, and so I plugged it into a CM4 IO Board.

The Time Card mini is a PCIe-based carrier board for the Raspberry Pi Compute Module 4, and by itself, it allows you to install a CM4 into a PC, and access the CM4's serial console via PCIe.

But the real power comes in 'sandwich' boards: